Write the first four terms of the sequence defined recursively by $a_n = n - 2a_{n-1}$, $a_1 = -1$.

SCORE: /4 PTS

Write your final answer as a list.

$$a_2 = 2 - 2a_1 = 2 - 2(-1) = 4$$

 $a_3 = 3 - 2a_2 = 3 - 2(4) = -5$ $-1, 4, -5, 14$
 $a_4 = 4 - 2a_3 = 4 - 2(-5) = 14 + 0$ Point FOR WRITING AS A LIST WITH -1 AT THE FRONT

Simplify the factorial expression $\frac{(4n-2)!}{(4n+1)!}$. You may leave your final answer in a factored form.

SCORE: ____/ 4 PTS

$$\frac{(4n+1)!}{(4n-2)!} = \frac{1}{4n(4n+1)(4n-1)}$$

$$\frac{(4n-2)!}{(4n+1)!} = \frac{1}{4n(4n+1)(4n-1)}$$

$$\frac{(2)}{(4n+1)!}$$

$$\frac{(4n-2)!}{(4n+1)!} = \frac{1}{4n(4n+1)(4n-1)}$$

$$\frac{(2)}{(4n+1)!}$$

$$\frac{(4n+1)!}{(4n+1)(4n-2)!} = \frac{1}{4n(4n+1)(4n-1)}$$
Use sigma notation to write the series $\frac{4}{4} + \frac{7}{9} + \frac{10}{16} + \frac{13}{25} + \dots + \frac{25}{81}$

$$\frac{1}{2^{2}} + \frac{10}{3^{2}} + \frac{10}{4^{2}} + \frac{13}{5^{2}} + \dots + \frac{25}{81}$$

$$\frac{1}{2^{2}} + \frac{10}{3^{2}} + \frac{13}{4^{2}} + \dots + \frac{25}{81}$$

SCORE: /5 PTS

$$\frac{5}{n=1} \frac{4+3(n-1)}{(n+1)^2} = \frac{3}{3n+1} \frac{3n+1}{2}$$

$$\frac{5}{(n+1)^2} \frac{3n+1}{(n+1)^2} \frac$$

The clearance store had a sofa on sale for \$900. For 9 weeks, the sofa did not get sold, and each week, the store SCORE: _____/3 PTS reduced the price by 4% of its price the previous week. Let a_n be the price of the sofa during the n-th week that it was on sale.

Is the sequence $a_1, a_2, a_3, \dots, a_n$ arithmetic, geometric or neither? [a]

GEOMETRIC, (1)

If the sequence is arithmetic, find the common difference. [b] If the sequence is geometric, find the common ratio. If the sequence is neither, show how you arrived at that conclusion.

Find the sum $\sum_{n=2}^{6} (-1)^{n+1} (7-2n)$. Show clearly the terms being added together.

SCORE: ____/ 3 PTS

$$-3+1+1-3+5=1 \\ \textcircled{2} \textcircled{2} \textcircled{2} \textcircled{2}$$

Find the general formula and the 12^{th} term of the geometric sequence with $a_2 = 750$ and $a_5 = 162$.

SCORE: ____/ 5 PTS

Round all calculations to 4 decimal places.

$$a_{2}=a_{1}r=750$$

 $a_{5}=a_{1}r^{4}=162$ DIVIDE

$$r^{3}=0.2160$$

$$r=\sqrt[3]{0.216}=0.6 \rightarrow 0.6a_{1}=750$$

$$a_{1}=1250$$

$$a_n = 1250(0.6)^n$$
 $a_{12} = 1250(0.6)^n$
 ≈ 4.53500

POINT IF YOU

STOPPED AT

Find the sum of the first 100 terms of the arithmetic sequence with $a_{10} = 31$ and $a_{22} = 23$.

SCORE: ____/6 PTS

1250 (0.6)"

Use fractions, NOT decimals, for all work.

$$a_{10} = a_{1} + 9d = 31$$

$$a_{12} = a_{1} + 21d = 23$$

$$12d = -80$$

$$d = -\frac{1}{3} \rightarrow a_{1} - b = 31$$

$$a_{1} = 370$$

$$S_{00} = \frac{100}{2}(2(37) + (100 - 1)(-\frac{2}{3})) \text{ or } a_{100} = 37 + 99(-\frac{2}{3}) = -29$$

$$= 400$$

$$C = \frac{100}{2}(37 - 29) = 400$$

Find parametric equations for the ellipse with foci (3, 5) and (3, 1), and vertices (3, 7) and (3, -1). SCORE: _____/5 PT CENTER = (3, 3)

$$a = 7 - 3 = 4$$

$$c = 5 - 3 = 2$$

$$a^{2} = b^{2} + c^{2}$$

$$16 = b^{2} + 4 \rightarrow b^{2} = 12 \rightarrow b = 2\sqrt{3}$$